If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+4x=19
We move all terms to the left:
2x^2+4x-(19)=0
a = 2; b = 4; c = -19;
Δ = b2-4ac
Δ = 42-4·2·(-19)
Δ = 168
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{168}=\sqrt{4*42}=\sqrt{4}*\sqrt{42}=2\sqrt{42}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{42}}{2*2}=\frac{-4-2\sqrt{42}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{42}}{2*2}=\frac{-4+2\sqrt{42}}{4} $
| v−3=4 | | 5/3z+3=7+z | | -4(1-7r)=36+8r | | m(m−11)=−18 | | 4.8+10m=6.96 | | 12z2+13z+3=0 | | 5h-2(11+h)=-5 | | 124=(6x-11)+(4x-25) | | 124=(6x-11)+(4x-26) | | x+3=−6 | | x-1/4x=150 | | s+1/3=10 | | 4x+3=3x–2 | | 8x-6-2x=24 | | 4x^2-17x+14=0 | | 3p+4=29 | | 0.02(2t-1)=0.04(t-5)+0.18 | | -2x+3=5 | | 8+y/4=20 | | 3p+4=20 | | 6(x-2)+3=2x+4(-2+x) | | 6x-5=-17 | | (x+3)²=16 | | 5-3(2k-4)=7-7k | | 3r+12/6=3r-9/3 | | -2=3/4x+12 | | (v-4)/2=-10 | | 3p²-6p-9=0 | | 3(2x+4)=2(3x+6 | | -9=3+3u | | |16x+20|=|10-20x| | | 0.4^3-5x^2+3x+7=0 |